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Abstract— This paper proposes a novel consensus-based dis-
tributed nonlinear filter with kernel mean embedding (KME) to
fill the gap of kernel-based filters for distributed sensor networks.
Specifically, to approximate the posterior distribution, the system
state is embedded into a higher-dimensional reproducing ker-
nel Hilbert space (RKHS), and then the nonlinear measurement
function is linearly represented. As a result, an update rule for
the KME of posterior distribution is established in the RKHS.
To demonstrate that the proposed distributed filter can achieve
centralized estimation accuracy, a centralized filter is first developed
by extending the standard Kalman filter in the state space to
the RKHS. Then, the proposed distributed filter is proved to
be equivalent to the centralized one. Two examples highlight the
effectiveness of the developed filters in target tracking scenarios,
including a nearly constantly moving target and a turning target,
respectively, with range, bearing, and range-rate measurements.
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I. INTRODUCTION

THE nonlinear filtering problem is critically important
in many fields, such as target tracking [1]–[8], navigation
[9] and detection [10]. In practice, the measurements are
usually collected by some sensors in a network structure.
Since conventional centralized filtering can achieve high
estimation accuracy, it is often regarded as an evaluation
benchmark for filtering accuracy. However, centralized
filtering requires each sensor to send its measurement to
the fusion center promptly, which is frequently burdened
with a computationally demanding task and susceptible
to processing unit failures [11]. In contrast, distributed
filtering allows each sensor to implement filtering inde-
pendently using its measurements and to reach an agree-
ment by communicating with its neighbors. This strategy
is generally more practical, robust, resilient, and computa-
tionally efficient [12]–[16]. Consequently, research on the
distributed nonlinear filtering problem warrants attention.

Bayesian filtering provides a unified recursive frame-
work for the nonlinear filtering problem, but the posterior
probability density function cannot be expressed analyti-
cally due to the system’s nonlinearity. As a result, many
approximation schemes have been developed, focusing
either on the estimated quantities, such as moments,
or the probability density function. By approximating
the first two moments of the posterior distribution, the
distributed Kalman-type filters gain significant popularity
and have been widely applied in many practical scenar-
ios. For example, by linearizing the nonlinear functions
using Taylor expansion, the distributed Kalman filter
for linear systems can be directly applied to nonlinear
systems [17]–[20]. Still, it may diverge for problems of
high nonlinearity [21]. Hence, to solve this problem, the
distributed unscented Kalman filter [22], the distributed
cubature Kalman filter [23], and their extensions have
been proposed [24]. Although these Kalman-type filters
are efficient and convenient to implement, they cannot
obtain the global posterior probability density function
for further statistical inference.

By approximating the posterior probability density
function, the celebrated particle filters adopt the Monte
Carlo technique to draw a set of particles for fitting
the probability density functions. Under different sam-
pling strategies, the distributed particle filters have been
developed and widely applied [25]–[30]. Although the
particle filters are quite valuable for distribution approx-
imation, they often suffer from a heavy computational
burden. Therefore, to efficiently approximate the poste-
rior probability density function, the kernel method is
widely recognized as a powerful tool for distribution ap-
proximation [31]–[36]. Besides, by introducing a higher-
dimensional reproducing kernel Hilbert space (RKHS),
the kernel method represents the posterior probability
density function as a point in the RKHS where standard
mathematical operations can be performed. It should be
noted that there exist many kernel-based filters for single-
sensor setups using either the kernel Bayes’ rule [37] or
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the kernel Kalman rule [38], which can be found in [32],
[35], [39]. To the best of our knowledge, however, for
distributed sensor networks, research on the kernel-based
filter is still lacking.

This paper develops an effective kernel-based nonlin-
ear filter for a distributed sensor network, where “effec-
tive” reflects the centralized estimation accuracy. Among
various kernel methods, this study adopts the kernel mean
embedding (KME) method, the most commonly used
and recognized scheme owing to its effectiveness. When
approximating the posterior distribution, the nonlinearity
of the measurement function poses a challenge. There-
fore, we linearly approximate the nonlinear measurement
function in the RKHS, which is still nonlinear in the state
space. This strategy represents the nonlinear function as
a linear operator in a higher-dimensional space. Then, we
provide the KME of posterior distribution in the RKHS,
from which the posterior distribution’s sample can also
be obtained. For a distributed sensor network, the nodes
update the KME of posterior distribution by exchanging
information with each other until they reach a consensus.
When the finite consensus is reached, the nodes reach an
agreement in the same form as the result of a centralized
filter. This study is unique in extending kernel-based
filtering to distributed setting while ensuring centralized
estimation accuracy simultaneously. The proposed filters
are tested in various target-tracking scenarios.

The major contributions of this paper are as follows:

1) We develop a novel consensus-based distributed non-
linear filter by approximating the KME of posterior
distribution, filling the kernel-based filter gap for
distributed sensor networks. In each time step, the
nodes reach an agreement with finite consensus
steps, specifically, less than the number of nodes.

2) We propose a novel kernel-based centralized nonlin-
ear filter, which extends the centralized Kalman filter
to the RKHS. Compared with the existing kernel-
based filters for single-sensor setups, the proposed
filter significantly improves the filtering efficiency,
which is highly valuable for real-time applications.

3) We prove that the proposed two filters are equivalent,
which indicates that the distributed filter can reach
the centralized estimation accuracy while maintain-
ing the distributed setting. We further demonstrate
the filters’ superiority compared with existing ap-
proaches through target tracking examples.

This paper is organized as follows. Section II in-
troduces some preliminaries and formulates the problem
investigated. Section III presents the developed distributed
nonlinear filter, and Section IV introduces the proposed
centralized nonlinear filter. Section V analyzes the perfor-
mance of both filters, and Section VI presents two target
tracking examples. Section VII concludes this paper.
Finally, some proofs and derivations are provided in the
Appendix.

Notations: The scalars, vectors, and matrices are de-
noted by lowercase, bold lowercase, and lightface capi-

tal letters, respectively. For simplicity and convenience,
scalar 0, zero vector, and zero matrix are all denoted
by 0. N+ stands for the set of all positive integers.
The sets of all p-dimensional real vectors and all p × q
real matrices are denoted by Rp and Rp×q, respectively.
For a vector a, diag(a) represents a diagonal matrix
with principal diagonal consisting of a, ∥a∥q denotes
ℓq norm of a. When q = 2, it is the Euclidean norm
abbreviated as ∥a∥. All vectors in this paper are column
vectors. For a matrix A, its Frobenius norm is denoted
by ∥A∥. I is an identity matrix with an appropriate
dimension. block-diag(A1, . . . , Ap) represents a block
diagonal matrix with a main diagonal block consisting of
matrices Ai (i = 1, . . . , p). The notation “⊗”represents the
Kronecker product operation between matrices (vectors).
For a Hilbert space H, its inner product is denoted by
⟨·, ·⟩H; its norm induced by the inner product is defined
by ∥ · ∥H =

√
⟨·, ·⟩H; Φ∗ : H → Rp represents the

adjoint operator of an operator Φ : Rp → H. E [·] is the
mathematical expectation. N (x̄, P ) denotes the Gaussian
distribution with mean x̄ and covariance matrix P .

II. PRELIMINARIES AND PROBLEM
FORMULATION

A. Distribution Embedding

An RKHS, denoted by H, on Ω is a Hilbert space of
functions g : Ω → R equipped with a kernel function k :
Ω×Ω → R satisfying the following reproducing property:

⟨g, k(·,x)⟩H = g(x), ∀g ∈ H,

and consequently,

⟨k(·,x), k(·,x′)⟩H = k(x′,x) = k(x,x′).

The kernel function can also be treated as an implicit
feature map ϕ : Ω → H satisfying

⟨ϕ(x), ϕ(x′)⟩H = k(x′,x).

Some commonly-used kernel functions on Rp are listed
below for later use:

k(x,x′) =
(
xTx′ + c

)d
, (polynomial kernel)

k(x,x′) = exp

(
−∥x− x′∥2

σ

)
, (Gaussian kernel) (1)

k(x,x′) = exp

(
−∥x− x′∥1

σ

)
, (Laplace kernel) (2)

where c, σ > 0, d ∈ N+.
The KME of a distribution with probability density

function p(x) is an element in the RKHS defined by

µx := E [ϕ(x)] =
∫
Ω

ϕ(x)p(x)dx,

and has the following property:

⟨µx, g⟩H = E [g(x)], ∀g ∈ H.

Given a weighted sample {(xl, wl)}ml=1 of p(x), the KME
can be approximated as

µ̂x =

m∑
l=1

wlϕ(xl).

2



For two separable Hilbert spaces F and G with {ei}i∈I

and {fj}j∈J being their orthonormal bases, respectively,
where the index sets I and J are either finite or countable,
the Hilbert–Schmidt norm of a compact linear operator
L : G → F is defined as

∥L∥HS =
∑
j∈J

∥Lfj∥2F

=
∑
i∈I

∑
j∈J

|⟨Lfj , ei⟩F |2. (3)

We say the operator L is Hilbert–Schmidt when (3) is
finite. For more details, the reader is referred to [34].

B. Problem Formulation

We consider the sensor network with communication
topology modeled by an undirected graph G = (V, E , A),
where V = {1, 2, . . . , n}, E , and A stand for the node
set comprising n sensors, an edge set consisting of
communication links between the sensors, and a weighted
adjacency matrix, respectively. For i, j ∈ V , A = [aij ] is
assumed to be double stochastic and satisfies aii > 0,
aij ≥ 0,

∑
j∈V aij = 1,

∑
i∈V aij = 1. The neighboring

sensors of Node i form a set Ni = {j ∈ V|aij > 0} and
i ∈ Ni, from which Node i receives information.

Assumption 1:
G is undirected and connected.

Assumption 1 is standard and commonly used (see,
e.g., [17]–[19]). If Assumption 1 satisfies, then for any
pair of nodes (i, j), there is a path made up of edges
between them.

For each node i ∈ V , the following nonlinear dynamic
system is considered:

xk = fk−1(xk−1,ωk),

yi,k = hi,k(xk) + vi,k,
(4)

where xk ∈ Rnx and yi,k ∈ Rnyi are the state and the
node i’s measurement, respectively. Besides, k = 1, 2, . . .
is the time index, fk : Rnx × Rnω → Rnx and hi,k :
Rnx → Rnyi are known vector-valued transition and
measurement functions and typically nonlinear, and the
process noise {ωk} and measurement noise {vi,k} are
mutually independent zero-mean white noise sequences
whose joint covariance matrix is given by

E
{[

ωk

vi,k

]
[ωT

k′ vT
j,k′ ]

}
=

[
Qk 0
0 Ri,kδi,j

]
δk,k′ ,

where Qk ⪰ 0, Ri,k ≻ 0, and δi,j is the Kronecker delta
function. The initial state with mean x̄0 and covariance
matrix P0 is independent of the noise. Each node cannot
acquire the other nodes’ measurement functions and noise
information in the distributed setting. Additionally, each
node utilizes its measurement data and communicates
with its neighbors to approximate the state posterior
distribution as accurately as possible and to reach a
consensus with the other nodes.

It is well known that the optimal solution to such a
filtering problem for the sensor network with each node
under system (4) is given by the centralized Bayesian
filtering, e.g., [11], consisting of prediction and update
steps:

p(xk|Yk−1) =

∫
Rnx

p(xk|xk−1)p(xk−1|Yk−1)dxk−1,

p(xk|Yk) = c · p(yk|xk)p(xk|Yk−1),

where Yk = {y1, . . . ,yk}, yk = [yT
1,k, . . . ,y

T
n,k]

T and
c is a normalization constant. The centralized Bayesian
filtering is elegant in theory but challenging to implement
for the following reasons:

1) The closed-form expressions for the prediction
and posterior probability density functions, i.e.,
p(xk|Yk−1) and p(xk|Yk), are generally difficult or
even impossible to obtain due to the nonlinearity of
the transition and measurement functions.

2) The centralized setting is often burdened with a
computationally demanding task and susceptible to
processing unit failures. In addition, it requires each
sensor to send its measurement to the fusion center
promptly.

Spurred by these deficiencies, this paper develops a new
nonlinear filter that achieves the following two goals
simultaneously:

1) Distributed setting: It should be designed for a
distributed sensor network.

2) Centralized accuracy: It should have centralized es-
timation accuracy, i.e., it should effectively approx-
imate the centralized Bayesian filtering.

Next, we resort to the kernel method (see, e.g., [31]–[36])
to approximate the posterior distribution and achieve the
above two goals with the help of KME.

III. PROPOSED DISTRIBUTED NONLINEAR
FILTERING

This section provides the distributed filtering com-
prising prediction and update steps, where the KMEs of
prediction and posterior distributions are given.

A. Prediction

For each node i ∈ V , we denote the sample of the
posterior distribution at time k − 1 by

Xi,k−1|k−1 =
[
x−
i,1, . . . ,x

−
i,m

]
.

The corresponding weight vector is

wi,k−1 = [wi,k−1,1, . . . , wi,k−1,m]
T
, (5)

where 1Twi,k−1 = 1, and each wi,k−1,l ≥ ϵ for l =
1, . . . ,m with ϵ being a small positive real number. Then,
the sample of the prediction distribution, denoted by
Xi,k|k−1, is generated as follows:

Xi,k|k−1 =
[
x+
i,1, . . . ,x

+
i,m

]
,

x+
i,l ∼ p(xk|x−

i,l), l = 1, . . . ,m,
(6)
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where p(xk|x−
i,l) is the probability density function of the

random vector fk−1(x
−
i,l,ωk). Specifically, by generating

m sample points from the distribution of process noise
ωk and propagating them through nonlinear functions
fk−1(x

−
i,l, ·) : Rnω → Rnx for l = 1, . . . ,m, we obtain

{x+
i,1, . . . ,x

+
i,m}. The sampling methods can be any of

the following:
1) Deterministic sampling, such as the quasi-Monte Carlo

method [40] and the importance Gaussian quadrature
[41].

2) Stochastic sampling, such as the Monte Carlo method
[42], where all nodes use the same random number
generator with the same initial random number seed.

The commonality of the above two sampling methods lies
in their fixed sample points for a given distribution. In
other words, if all nodes have the same posterior sample
Xi,k−1|k−1, then they also have the same predicted sample
Xi,k|k−1. Note that the weight vector corresponding to
Xi,k|k−1 is also wi,k−1 given by (5), which indicates that
the prediction step updates the sample points’ positions to
fit the prediction distribution while keeping their weights
unchanged.

To obtain the KME of prediction distribution, denoted
by µi,k|k−1, we consider embedding the state into an
RKHS H of functions with a feature map ϕ (time-
invariant) defined by a positive-definite kernel function
k : Rnx ×Rnx → R, i.e.,

ϕ(x) = k(·,x).

Then, an estimate for the KME of prediction distribution
is given by

µi,k|k−1 =

m∑
l=1

wi,k−1,lϕ(x
+
i,l) = Φwi,k−1, (7)

where

Φ =
[
ϕ(x+

i,1), . . . , ϕ(x
+
i,m)

]
.

B. Update

The main challenge in the update step lies in dealing
with the nonlinear measurement functions. For each node
i ∈ V , we care about the nonlinearity of hi,k(·) only
in the range of the state. Thus, we consider represent-
ing the measurement functions as inner products in the
RKHS [36]. Specifically, hi,k(·) can be represented in the
following form:

hi,k(·) =
[
h
(1)
i,k (·), . . . , h

(nyi
)

i,k (·)
]T

≜
[〈
λ
(1)
i,k , ϕ(·)

〉
H, . . . ,

〈
λ
(nyi

)

i,k , ϕ(·)
〉
H

]T
≜ Λ∗

i,kϕ(·),

where

Λi,k =
[
λ
(1)
i,k , . . . , λ

(nyi
)

i,k

]
(8)

is a Hilbert–Schmidt linear operator mapping from Rnyi

to H with λ
(1)
i,k , . . . , λ

(nyi
)

i,k ∈ H to be determined.

Remark 1:
The nonlinear function hi,k(·) can be approximated up to
arbitrary accuracy by introducing a class of particularly
large RKHSs (see Section 4.6 in [43]). For example, if
k(·, ·) is a Gaussian kernel, then for all ε > 0, q ∈ [1,∞),
there exists Λ̃i,k such that h̃i,k(·) = Λ̃∗

i,kϕ(·) satisfying(∫
Rnx

∥∥hi,k(xk)− h̃i,k(xk)
∥∥q
q
· p(xk|Yk−1)dxk

) 1
q

< ε

⇔
∫
Rnx

∥∥hi,k(xk)− h̃i,k(xk)
∥∥q
q
· p(xk|Yk−1)dxk < δ,

(9)

where δ ≥ εq > 0.

Let

Yi,k =
[
hi,k(x

+
i,1), . . . , hi,k(x

+
i,m)

]
. (10)

Then, an estimate of Λi,k can be determined by solving
the following minimization problem:

Λ̂i,k = argmin
Λ

m∑
l=1

wi,k−1,l

∥∥hi,k(x
+
i,l)− Λ∗ϕ(x+

i,l)
∥∥2.
(11)

The objective function of (11) is essentially an estimate of
the second integral in (9) by taking q = 2. Note that (11)
is a convex optimization problem whose optimal solution
can be analytically obtained.

Theorem 1:
The solution to (11) is given by

Λ̂i,k = ΦK−1Y T
i,k,

where K is the Gram matrix (see Page 117 in [43]), given
by

K =

k(x+
i,1,x

+
i,1) . . . k(x+

i,1,x
+
i,m)

...
. . .

...
k(x+

i,m,x+
i,1) . . . k(x+

i,m,x+
i,m)

 .

Proof:
See Appendix A.

Remark 2:
Theorem 1 indicates that the minimizer of (11) is in-
dependent of the weights wi,k−1,1, . . . , wi,k−1,m. This
is because hi,k(·) is fitted exactly by Λ̂∗

i,kϕ(·) in the
evaluated points x+

i,1, . . . ,x
+
i,m.

Remark 3:
If the kernel function k(·, ·) is strictly positive definite,
then the Gram matrix K is positive definite. In practice,
K−1 can be replaced by (K + σI)−1 with σ > 0 being a
small real number for numerical stability.

Based on Theorem 1, the measurement equation can
be linearly converted into

yi,k = Λ̂∗
i,kϕ(xk) + vi,k.
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It is worth emphasizing that yi,k is linear with respect to
ϕ(xk) since Λi,k is a linear operator, but still nonlinear
with respect to xk since ϕ is a nonlinear map. This means
that the filtering problem is simplified significantly in the
RKHS while the original nonlinearity is still maintained.
To obtain the KME of posterior distribution, denoted by
µi,k|k, we design the update rule as follows:

µi,k|k = µi,k|k−1 +ΦW
1
2

i,k−1Γ
−1
i,kξi,k, (12)

Wi,k−1 = diag(wi,k−1)−wi,k−1w
T
i,k−1,

where the matrix Γi,k ∈ Rm×m and the vector ξi,k ∈ Rm

are to be determined by the following consensus step.

Remark 4:
Wi is positive semi-definite. Specifically, for all z =
[z1, . . . , zm]T ∈ Rm, we have

zTWi,k−1z = zTdiag(wi,k−1)z− zTwi,k−1w
T
i,k−1z

=

m∑
l=1

wi,k−1,lz
2
l −

(
m∑
l=1

wi,k−1,lzl

)2

≥ 0,

where the inequality holds based on Jensen’s inequality
(see Page 246 in [44]).

To reach a consensus in a finite number of steps,
we resort to the concept of the minimal polynomial of
a matrix [45]. Suppose the minimal polynomial of the
weighted adjacency matrix A has degree d+1 (d+1 ≤ n)
and is given as

q(t) = td+1 + αdt
d + · · ·+ α1t+ α0,

where α0, α1, . . . , αd are constants. Let

s = [s1, s2, . . . , sd+1]
T

=

[
1, 1 + αd, 1 + αd−1 + αd, . . . , 1 +

d∑
j=1

αj

]T
.

Then, the distributed consensus algorithm for Γi,k and ξi,k
is summarized in Algorithm 1, where the initialization is
designed as follows:

Γ
(0)
i,k = nW

1
2

i,k−1Y
T
i,kR

−1
i,kYi,kW

1
2

i,k−1 + I,

ξ
(0)
i,k = nW

1
2

i,k−1Y
T
i,kR

−1
i,k

(
yi,k − Λ̂∗

i,kµi,k|k−1

)
.

Set

Γ
(r)
k =

[
Γ
(r)T
1,k , Γ

(r)T
2,k , . . . , Γ

(r)T
n,k

]T
,

ξ
(r)
k =

[
ξ
(r)T
1,k , ξ

(r)T
2,k , . . . , ξ

(r)T
n,k

]T
.

Then, (13) and (14) can be written more compactly as
follows:

Γ
(r)
k = (A⊗ I)Γ

(r−1)
k = (Ar ⊗ I)Γ

(0)
k ,

ξ
(r)
k = (A⊗ I)ξ

(r−1)
k = (Ar ⊗ I)ξ

(0)
k .

Algorithm 1 Distributed Consensus Algorithm for Γi,k

and ξi,k

Input: Γ
(0)
j,k and ξ

(0)
j,k , for all j ∈ Ni

1: Set r = 0.
2: Set Γ∗

i,k = 0, ξ∗i,k = 0.
3: repeat
4: Implement

Γ
(r+1)
i,k = Γ

(r)
i,k +

∑
j∈Ni

aij

(
Γ
(r)
j,k − Γ

(r)
i,k

)
, (13)

ξ
(r+1)
i,k = ξ

(r)
i,k +

∑
j∈Ni

aij

(
ξ
(r)
j,k − ξ

(r)
i,k

)
, (14)

Γ∗
i,k = Γ∗

i,k + sd+1−rΓ
(r)
i,k ,

ξ∗i,k = ξ∗i,k + sd+1−rξ
(r)
i,k .

5: Set r = r + 1.
6: until r = d.
7: Let

Γ∗
i,k = (1Ts)−1Γ∗

i,k,

ξ∗i,k = (1Ts)−1ξ∗i,k.

Output: Γ∗
i,k, ξ∗i,k

From [45], it is known that if Assumption 1 holds, then
for all i ∈ V , the following two equations hold:

Γ∗
i,k =

1

n

∑
j∈V

Γ
(0)
j,k

=
1

n

∑
j∈V

(
nW

1
2

j,k−1Y
T
j,kR

−1
j,kYj,kW

1
2

j,k−1 + I
)
, (15)

ξ∗i,k =
1

n

∑
j∈V

ξ
(0)
j,k

=
1

n

∑
j∈V

nW
1
2

j,k−1Y
T
j,kR

−1
i,k

(
yj,k − Λ̂∗

j,kµj,k|k−1

)
.

(16)

Clearly, the right-hand sides of (15) and (16) are free of
index i. Hence, all nodes reach an agreement by com-
municating with their neighbors, and the consensus steps
are no more than n−1. The computational complexity of
Algorithm 1 is O((n− 1)m2ni), where ni is the number
of neighbors of Node i.

C. Proposed Distributed Filtering Algorithm

To obtain the state estimate xi,k|k, and its error co-
variance matrix Pi,k|k, we first provide the sample for
posterior distribution from its KME given by (12). Note
that (12) can be rewritten as follows:

µi,k|k = Φ(wi,k−1 +W
1
2

i,k−1Γ
−1
i,kξi,k).

Let

w̃i,k = wi,k−1 +W
1
2

i,k−1Γ
−1
i,kξi,k. (17)
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Then, we show that µi,k|k is actually a weighted combi-
nation of each column of Φ.

Theorem 2:
w̃i,k is a weight vector satisfying 1Tw̃i,k = 1.

Proof:
See Appendix B.

Next, we obtain the sample of the posterior distribu-
tion:

Xi,k|k =
[
x+
i,1, . . . ,x

+
i,m

]
,

with the corresponding weight vector w̃i,k given by (17).
Since the elements of w̃i,k may be negative due to the
randomness of yi,k, we normalize the weight vector w̃i,k

by minimizing the empirical maximum mean discrepancy:

min
wi,k

∥∥Φw̃i,k − Φwi,k

∥∥2
H

s.t. 1Twi,k = 1,

wi,k,l ≥ ϵ, l = 1, . . . ,m,

(18)

where wi,k = [wi,k,1, . . . , wi,k,m]T, ϵ is a small positive
real number. Based on the fact that∥∥Φw̃i,k − Φwi,k

∥∥2
H = (wi,k − w̃i,k)

TΦ∗Φ(wi,k − w̃i,k)

= (wi,k − w̃i,k)
TK(wi,k − w̃i,k),

we know that (18) is a convex quadratic programming
and can be solved efficiently by many classical numerical
methods such as the interior-point methods [46].

Remark 5:
In contrast to the L2 distance between two kernel density
estimates, the maximum mean discrepancy between two
embeddings has more power against local departures from
the null hypothesis for a two-sample test [33], [34].

Then, we consider the so-called pre-image problem,
i.e., recover the state estimation in the state space [36]. At
time k, based on the sample of the posterior distribution,
we obtain the concerned moment approximations. In the
minimum mean square error sense, the optimal state
estimate and its error covariance matrix are given by the
mean and covariance matrix of the posterior distribution,
respectively, which are calculated as follows:

xi,k|k =

m∑
l=1

wi,k,lx
+
i,l, (19)

Pi,k|k =

m∑
l=1

wi,k,l(x
+
i,l − xi,k|k)(x

+
i,l − xi,k|k)

T. (20)

For k = 1, 2, . . . , each node i ∈ V implements the pro-
posed distributed filtering algorithm, which is summarized
in Algorithm 2.

Remark 6:
Generally, the pre-image problem of recovering a state
distribution in the state space model from its KME is
challenging, as it is difficult to get the distribution sample
from its KME directly. Benefiting from the update rule we

designed in (12), the corresponding pre-image problem
becomes rather simple.

Algorithm 2 Distributed Nonlinear Filtering Algorithm
Input: Xi,k−1,k−1, wi,k−1

I. Prediction:
1: Calculate Xi,k|k−1 using (6).

II. Update:
2: Set Xi,k|k = Xi,k|k−1.
3: Implement Algorithm 1 to get Γ∗

i,k, ξ∗i,k.
4: Calculate w̃i,k using (17).
5: Calculate wi,k by solving (18).
6: Calculate xi,k|k and Pi,k|k using (19) and (20).

Output: Xi,k|k, wi,k, xi,k|k, Pi,k|k

Remark 7:
The update step changes the weights of the sample points
of the prediction distribution while keeping the positions
unchanged. This is similar to the celebrated particle filter,
where the positions of the particles are changed to fit
the prediction distribution in the prediction step, and the
weights are updated to fit the posterior distribution in the
update step.

D. Discussions

Some discussions about the estimators’ consistency,
the network’s communication, and the algorithm’s imple-
mentation are as follows.

1) Consistency: In the prediction and update steps, we
use m sample points to calculate the KME of prediction
distribution by (7) and the KME of posterior distribution
by (12), respectively. It can be shown that the estimators
(7) and (12) are both consistent. Specifically, similarly to
the analysis in [32], the estimation errors converge to zero
in the RKHS norm (i.e., the maximum mean discrepancy)
at an overall rate of O(m− 1

2 ).
2) Communication: Note that the proposed distributed

algorithm considers ideal communication links, where
“ideal” means no disturbed noise. If they are disturbed by
a noise sequence at time k, denoted by ϵ1,k, . . . , ϵd,k, then
each element of Γ∗

i,k and ξ∗i,k in Algorithm 1 will be dis-
turbed by (1Ts)−1

∑d
j=0

∑j
i=1 A

iϵj−i,ksd+1−j . Specifi-
cally, let γj,k be an element of Γj,k (or ξi,k) for j =
1, . . . , n, and γk = [γ1,k, . . . , γn,k]

T. Then, we have
γ
(r)
k = Aγ

(r−1)
k for r = 1, 2, . . . , d. If the communication

links are noisy by ϵr,k at the r-th consensus step, then we
can obtain γ̃

(r)
k = γ

(r)
k +

∑r
i=1 A

iϵr−i,k. Additionally, we
have

γ̃∗
k = (1Ts)−1

d∑
j=0

γ̃
(j)
k sd+1−j

= (1Ts)−1
d∑

j=0

(γ
(j)
k +

j∑
i=1

Aiϵj−i,k)sd+1−j
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= (1Ts)−1

(
d∑

j=0

γ
(j)
k sd+1−j

+

d∑
j=0

j∑
i=1

Aiϵj−i,ksd+1−j

)

= γ∗
k + (1Ts)−1

d∑
j=0

j∑
i=1

Aiϵj−i,ksd+1−j .

It is important to save the communication cost in
a distributed filtering algorithm. From Algorithm 1, we
know that at each time k, for i ∈ V , j ∈ Ni, an m ×m
matrix Γj,k and an m dimensional vector ξj,k should be
transmitted from the j-th sensor to the i-th sensor. If the
sample size m is large, so is the communication cost. In
contrast, transmitting an nyi

×m matrix Yj,k, an nyi
×nyi

matrix Rj,k and an nyi
dimensional vector yj,k is more

efficient.
3) Implementation: When implementing Algorithm 2,

the weights of the sample of the posterior distribution may
be assigned to a few points and thus make many points
useless. Technically, this phenomenon can be avoided by
repeatedly drawing randomly from a discrete approxima-
tion of the posterior probability density function:

p(xk|Yk) ≈
m∑
l=1

wi,k,lδ(xk − βl),

where δ(·) is the Dirac delta function. This process creates
a uniformly weighted, independent, identically distributed
sample. Although the weights still accumulate on the
points with large probabilities, in the subsequent predic-
tion step, the same posterior sample point will correspond
to different predicted sample points resulting from the
process noise.

For the proposed distributed filtering algorithm, one
of our goals, i.e., “distributed setting”, is achieved. In the
following two sections, it is demonstrated that another
goal, “centralized accuracy”, is also achieved. Specifi-
cally, we propose a centralized filtering algorithm superior
to some widely used approaches and then prove that the
proposed distributed filtering algorithm is equivalent to
the centralized one.

IV. PROPOSED CENTRALIZED NONLINEAR
FILTERING

This section introduces the centralized filtering com-
prising prediction and update steps, where the KMEs of
the prediction and posterior distributions are obtained,
respectively.

1) Prediction: Denote the sample of the posterior
distribution at time k − 1 by

Xk−1|k−1 =
[
x−
1 , . . . ,x

−
m

]
,

with corresponding weight vector

wk−1 = [wk−1,1, . . . , wk−1,m]
T
, (21)

where 1Twk−1 = 1, and each wk−1,l ≥ 0 for l =
1, . . . ,m. Then, the sample of the prediction distribution,
denoted by Xk|k−1, is generated as follows:

Xk|k−1 =
[
x+
1 , . . . ,x

+
m

]
,

x+
l ∼ p(xk|x−

l ), l = 1, . . . ,m,
(22)

where p(xk|x−
l ) is the probability density function of the

random vector fk−1(x
−
l ,ωk). The corresponding weight

vector is given by (21). By embedding the state into the
RKHS H with the feature map ϕ, an estimate for the KME
of prediction distribution, denoted by µk|k−1, is given as

µk|k−1 =

m∑
l=1

wk−1,lϕ(x
+
l ), (23)

with its error covariance operator given as

Pϕ
k|k−1 =

m∑
l=1

wk−1,l

(
ϕ(x+

l )− µk|k−1

)(
ϕ(x+

l )− µk|k−1

)T
.

(24)

In fact, Pϕ
k|k−1 is a Hilbert–Schmidt linear operator map-

ping from H to itself.
2) Update: At time k, each node i ∈ V transmits its

measurement data yi,k to the fusion center. Let

yk =

y1,k

...
yn,k

 , hk(·) =

h1,k(·)
...

hn,k(·)

 , vk =

v1,k

...
vn,k

 ,

where yk ∈ Rny is augmented measurement vector, ny =∑n
i=1 nyi , hk : Rnx → Rny is augmented measurement

function, augmented noise vk ∈ Rny has covariance
matrix

Rk = block-diag(R1,k, . . . , Rn,k). (25)

Then, the measurement equation at the fusion center is
given by

yk = hk(xk) + vk,

which can be similarly converted into

yk = Λ∗
kϕ(xk) + vk,

where Λk =
[
λ
(1)
k , . . . , λ

(ny)
k

]
is a Hilbert–Schmidt linear

operator from Rny to H and needs to be determined.
Based on the sample points x+

1 , . . . ,x
+
m, an estimate of

Λk is determined by the following minimization problem:

Λ̂k = argmin
Λ

m∑
l=1

wk−1,l

∥∥hk(x
+
l )− Λ∗ϕ(x+

l )
∥∥2. (26)

Proposition 1:
The solution to (26) is

Λ̂k = ΦK−1Y T
k , (27)

where

Yk =
[
hk(x

+
1 ), . . . , hk(x

+
m)
]
,
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and K is the Gram matrix (see Page 117 of [43]) given
by

K =

k(x
+
1 ,x

+
1 ) . . . k(x+

1 ,x
+
m)

...
. . .

...
k(x+

m,x+
1 ) . . . k(x+

m,x+
m)

 .

Proof:
It is omitted since it is similar to that of Theorem 1.

To obtain the KME of posterior distribution, denoted
by µk|k, we design the following update rule:

µk|k = µk|k−1 +Gk(yk − Λ̂∗
kµk|k−1), (28)

with gain operator Gk : Rny → H given by

Gk = Pϕ
k|k−1Λ̂k(Λ̂

∗
kP

ϕ
k|k−1Λ̂k +Rk)

−1. (29)

The above update rule is essentially a direct extension of
the standard Kalman filtering in the Euclidean space to
the RKHS. We can also obtain the sample of the posterior
distribution from (28). Let

Φ =
[
ϕ(x+

1 ), . . . , ϕ(x
+
m)
]
,

Wk−1 = diag(wk−1)−wk−1w
T
k−1.

Then, (28) can be rewritten as follows:

µk|k = Φw̃k,

where

w̃k = wk−1 +Wk−1Y
T
k

(
YkWk−1Y

T
k +Rk

)−1

· (yk − Ykwk−1) (30)

and satisfies 1Tw̃k = 1 (because 1Twk−1 = 0 and
1TWk−1 = 0). The derivation of (30) can be found
in Appendix C. Therefore, the sample of the posterior
distribution, denoted by Xk|k, is given by

Xk|k =
[
x+
1 , . . . ,x

+
m

]
,

with the corresponding weight vector given by (30).
Similarly, we normalize the weight vector by minimizing
the empirical maximum mean discrepancy:

min
wk

(wk − w̃k)
TK(wk − w̃k)

s.t. 1Twk = 1,

wk,l ≥ ϵ, l = 1, . . . ,m,

(31)

where wk = [wk,1, . . . , wk,m]T, ϵ is a small positive real
number. The proposed centralized filtering algorithm is
summarized in Algorithm 3.

Generally, a “good” nonlinear filter should degenerate
to the optimal filter under the linear case, i.e., under the
linear dynamic system:

xk = Fk−1xk−1 + ωk,

yi,k = Hi,kxk + vi,k,

where Fk−1 ∈ Rnx×nx and Hi,k ∈ Rnyi
×nx are known

matrices.

Proposition 2:
The proposed centralized filter degenerates to the cen-

tralized Kalman filter.

Algorithm 3 Centralized Nonlinear Filtering Algorithm
Input: Xk−1|k−1, wk−1

I. Prediction:
1: Calculate Xk|k−1 using (22).

II. Update:
2: Set Xk|k = Xk|k−1.
3: Calculate w̃k using (30).
4: Calculate wk by solving (31).
5: Calculate

xk|k = Xk|k−1wk,

Pk|k = Xk|k−1

(
diag(wk)−wkw

T
k

)
XT

k|k−1.

Output: Xk|k, wk, xk|k, Pk|k

Proof:
By taking ϕ as the identity map, (28) with (29) reduces
to the standard Kalman filter.

Proposition 2 indicates that the proposed centralized
filter extends the centralized Kalman filter to nonlinear
dynamic systems. If {ωk} and {vi,k} are mutually inde-
pendent Gaussian white noise sequences, then the cen-
tralized Kalman filter is also the optimal filter regarding
the minimum mean square error. It is worth emphasizing
that the proposed centralized filter is also effective for
nonlinear dynamic systems with a single sensor. This
means that the covariance matrix of the measurement
noise is not limited to a block diagonal form as in (25).
Compared with some KME-based filters using either the
kernel Kalman rule [38], [39] or the kernel Bayes’ rule
[32], [35], [37], the proposed centralized filter signifi-
cantly reduces the computational burden in the update
step of filtering. Specifically, when computing the KME
of posterior distribution, the sizes of the matrices in the
matrix inverse operations involved in the kernel Kalman
rule and the kernel Bayes’ rule depend on the number
of sample points. However, in the proposed centralized
filter, the matrix size in the matrix inverse operation, i.e.,
the size of (YkWk−1Y

T
k +Rk) in (30), is independent of

the number of the sample points. Such an improvement is
precious for filtering, especially for real-time applications
such as target tracking.

V. PERFORMANCE ANALYSIS

This section demonstrates that the proposed dis-
tributed filter has centralized estimation accuracy by prov-
ing that it is equivalent to the proposed centralized filter.
The following lemma is required for this proof.

Lemma 1:
Let Λ̂k and Λ̂i,k be given by (27) and (8), respectively.

Then, we have

Λ̂k =
[
Λ̂1,k, . . . , Λ̂n,k

]
.

Proof:
See Appendix D.
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Based on the above lemma, we have the following
theorem.

Theorem 3:
The proposed distributed filter is equivalent to the pro-

posed centralized filter.

Proof:
See Appendix E.

Theorem 3 indicates that the proposed distributed
filter has the high accuracy of the centralized filtering
while ensuring the distributed setting, which accomplishes
both our goals, i.e., “distributed setting” and “centralized
accuracy”, simultaneously.

From Theorem 3 and Proposition 2, we have the
following corollary.

Corollary 1:
The proposed distributed filter degenerates to the central-
ized Kalman filter under the linear case.

VI. EXAMPLES

This section provides two different target tracking
scenarios to demonstrate the effectiveness of the proposed
distributed and centralized filters, as they are equivalent.
Our filters are compared with the Kalman-type distributed
nonlinear filter proposed in [23] and the celebrated par-
ticle filter [47]. The proposed filters adopt the classic
Gaussian and Laplace kernels given by (1) and (2) for
comparison.

The filters’ estimation accuracy is measured by the
root mean square error (RMSE) and the average Euclidean
error (AEE) of state estimate. As analyzed in [48], the
AEE is generally better than the RMSE as a performance
measure. All filtering algorithms were implemented in
Octave on an Intel Core i7 2.60 GHz computer.

A. Target of Nearly Constant Velocity

1. Bearing-Only Measurement
Similarly to [1], [49], [50], we consider a target

moving in a plane with a nearly constant velocity. The
state transition equation is given by

xk = Fk−1xk−1 +Gk−1ωk−1, (32)

where xk = [xk, ẋk, yk, ẏk]
T, [xk, yk]

T and [ẋk, ẏk]
T are

the position and velocity of the target, respectively, and

Fk−1 = block-diag(F, F ), Gk−1 = block-diag(G,G),

(33)

F =

[
1 ∆t
0 1

]
, G =

[
∆t2/2
∆t

]
, (34)

with sampling period ∆t = 1s, the process noise
ωk−1 follows the Gaussian distribution N (0, Qk−1) with
Qk−1 = 102GGT (m2/s2)2. The initial state is generated
from the Gaussian distribution N (x̄0, P0) with x̄0 =

[−500m, 18m/s, 500m,−12m/s]T and
P0 = diag([100m2, 10m2/s2, 100m2, 10m2/s2]T). (35)

The distributed sensor network under consideration
comprises ten sensors. For each node i = 1, 2, . . . , 10,
the measurement is a bearing:

θi,k = arctan

(
yk − bi
xk − ai

)
+ vi,k,

where [aim, bim]T is the position of Node i, and is
generated randomly from the square area with center
[0m, 0m]T and side length d = 5000m. The measurement
noise vi,k is distributed from the Gaussian distribution
N (0, σi,k) with σi,k = 0.01rad2. We set 500 particles in
the particle filter and take σ = 1 in the Gaussian and
Laplace kernels and 30 sample points in the proposed
filter.

Fig. 1 illustrates the communication topology of the
sensor network, where the solid dots represent the sensors
and the solid lines are their links. Fig. 1 satisfies Assump-
tion 1. Besides, Fig. 2 depicts the real target trajectory
and the estimate of the distributed nonlinear filter over
50 timesteps. It is observed that the proposed filter shows
good tracking performance.

Table I reports the averaged RMSEs and AEEs of the
position and velocity estimates over 100 Monte Carlo
runs and 50 timesteps. Compared with the method in
[23], the proposed filters with Gaussian and Laplace
kernels present an improvement of −4% and 38% in
position RMSE, 50% and 26% in velocity RMSE, 9%
and 26% in position AEE, and 44% and 10% in velocity
AEE. Compared with the particle filter, the corresponding
results improve by 9% and 45% in position RMSE, 43%
and 15% in velocity RMSE, 7% and 25% in position AEE,
and 46% and 12% in velocity AEE. Hence, the proposed
filters achieve more accurate position and velocity esti-
mates than [23] and the particle filter in the RMSE and
AEE metrics. More specifically, the proposed filters with
Gaussian and Laplace kernels have the best velocity and
position estimates, respectively. Interestingly, compared
with [23], the proposed filter using the Gaussian kernel
has a relatively large position RMSE (second row, fourth
column) but a smaller position AEE (fourth row, fourth
column). This could be caused by an estimate with a
relatively large deviation at a certain time since the RMSE
is susceptible to an individual point with a large deviation.
Thus, the proposed filter using a Gaussian kernel produces
good state estimates most of the time except for some
single moments. The numerical results reported in Table I
provide the corresponding theoretical supports: While the
method in [23] derives moment estimates only, the pro-
posed filter provides posterior density estimates and thus
results in a significantly improved filtering performance.

2. Range and Bearing Measurements
The target’s motion is also described by (32)–(34)

with a sampling period ∆t = 0.08s. Besides, the initial
state is drawn from a Gaussian distribution N (x̄0, P0)
with x̄0 = [0m,−18m/s, 500m, 12m/s]T and P0 given by
(35).
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Fig. 1. Communication topology of sensor network (Example A.1).
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Fig. 2. Real target trajectory and estimate by the proposed filter
(Example A.1).

TABLE I
Comparison results of averaged RMSEs and AEEs of position

estimates (m) and velocity estimates (m/s) (Example A.1).

measure

error method
method
in [23]

particle
filter

proposed filter
(Gaussian kernel)

proposed filter
(Laplace kernel)

position RMSEs 704.26 800.63 732.53 437.11

velocity RMSEs 120.43 104.82 59.78 88.67

position AEEs 316.75 310.94 288.61 234.52

velocity AEEs 61.87 63.55 34.62 55.72

We consider the sensor network presented in Fig. 3,
which comprises six sensors, where the i-th node (i =
1, 2, . . . , 6), located at [aim, bim]T, is randomly dis-
tributed in the square area of length d = 3000m, centered
at [0m, 0m]T. At time k, Node i observes the range
ri,k and bearing θi,k of the target, and the measurement
equation is as follows:

[
ri,k
θi,k

]
=

[√
(xk − ai)2 + (yk − bi)2

arctan
(
yk−bi
xk−ai

) ]
+ vi,k,

where the measurement noise {vi,k} is the zero-mean
Gaussian white noise sequence with covariance matrix
Ri,k = diag([100m2, 0.01rad2]T). We set 500 particles in
the particle filter and take σ = 2 in the Gaussian and
Laplace kernels and 20 sample points in the proposed
filter.

The tracking performance of the proposed filter is
depicted in Fig. 4, where the target moving at a nearly
constant velocity for 100 timesteps is observed. The
proposed filter performs satisfactorily, except for some
small yet acceptable deviations. Table II reports the
averaged RMSE and AEE of the position and veloc-
ity estimates over 100 timesteps and 100 Monte Carlo
runs for all competitor methods. Compared with [23],
the proposed filters using Gaussian and Laplace kernels
demonstrate improved performance of 36% and 38% in
position RMSE, 36% and 37% in velocity RMSE, 20%
and 23% in position AEE, and 14% and 19% in velocity
AEE. Compared with the particle filter, our filters afford
an improved performance by 27% and 30% in position
RMSE, 6% and 8% in velocity RMSE, 15% and 19% in
position AEE, and 8% and 13% in velocity AEE. Similar
to Example A.1, the proposed filters using Gaussian and
Laplace kernels have higher filtering accuracy than [23]
and the particle filter. In contrast, they show a broadly
similar performance in this example. This indicates that
in this scenario, choosing the kernel function may not be
the decisive factor affecting the filtering performance of
the proposed filter.

TABLE II
Comparison results of averaged RMSEs and AEEs of position

estimates (m) and velocity estimates (m/s) (Example A.2).

measure

error method
method
in [23]

particle
filter

proposed filter
(Gaussian kernel)

proposed filter
(Laplace kernel)

position RMSEs 6.67 5.91 4.29 4.16

velocity RMSEs 8.22 5.60 5.24 5.17

position AEEs 3.99 3.78 3.21 3.07

velocity AEEs 5.24 4.90 4.53 4.27
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Fig. 4. Real target trajectory and estimate by the proposed filter
(Example A.2).

B. Aircraft Coordinated Turn

Similar to [51], we consider the following dynamic
system:

xk =


1

sin(ωk−1∆t)
ωk−1

0
cos(ωk−1∆t)−1

ωk−1
0

0 cos(ωk−1∆t) 0 − sin(ωk−1∆t) 0

0
1−cos(ωk−1∆t)

ωk−1
1

sin(ωk−1∆t)
ωk−1

0

0 sin(ωk−1∆t) 0 cos(ωk−1∆t) 0
0 0 0 0 1

xk−1

+ ωk−1,

where ωk−1 is an unknown turn rate at time k− 1, ∆t =
0.2 is the sampling period, and {ωk} is the Gaussian white

noise sequence with zero mean and covariance matrix

Qk−1 = q


∆t3

3
∆t2

2 0 0 0
∆t2

2 ∆t 0 0 0

0 0 ∆t3

3
∆t2

2 0

0 0 ∆t2

2 ∆t 0
0 0 0 0 1.75× 10−3∆t

 ,

where q = 1m2/s3 is a scalar with respect to
noise intensity. The initial state of the aircraft
is distributed from N (x̄0, P0) with x̄0 =
[5000m, 180m/s, 5000m, 180m/s, 0.01rad] and P0 =
diag([1000m2, 100m2/s2, 1000m2, 100m2/s2, 0.001rad2]T).

The measurements of range ri,k, bearing θi,k and
range-rate ṙi,k are acquired using eight sensors, as de-
picted in Fig. 5, where the side length is d = 1000m. For
each node i = 1, . . . , 8, the measurement equation isri,kθi,k

ṙi,k

 =


√

(xk − ai)2 + (yk − bi)2

arctan
(
yk−bi
xk−ai

)
(xk−ai)ẋk+(yk−bi)ẏk√

(xk−ai)2+(yk−bi)2

+ vi,k,

with vi,k ∼ N (0,diag([10000m2, 0.01rad2, 10m2/s2]T)).
Fig. 6 illustrates the tracking performance for the par-

ticle filter with 1000 particles and for the proposed filter
with 60 sample points and σ = 0.01. The results highlight
that the proposed filter has a good tracking performance.
Besides, Table III reports the averaged RMSEs and AEEs
of the position and velocity estimates over 100 timesteps
and 50 Monte Carlo runs. In this example, the proposed
filter with Laplace kernel demonstrates the best position
and velocity estimation performance among all competitor
filters. Compared with [23], the proposed filters with
Gaussian and Laplace kernels attain an improved per-
formance by 18% and 27% in position RMSE, 26% and
39% in velocity RMSE, 18% and 28% in position AEE,
and 30% and 37% in velocity AEE. Compared with the
particle filter, the proposed filters improve performance by
8% and 18% in position RMSE, 6% and 22% in velocity
RMSE, 7% and 18% in position AEE, and 16% and 25%
in velocity AEE. This suggests an appealing performance
improvement of the proposed filter with Laplace kernel
over [23] and the particle filter.

TABLE III
Comparison results of averaged RMSEs and AEEs of position

estimates (m) and velocity estimates (m/s) (Example B).

measure

error method
method
in [23]

particle
filter

proposed filter
(Gaussian kernel)

proposed filter
(Laplace kernel)

position RMSEs 88.98 78.70 72.66 64.91

velocity RMSEs 56.80 44.67 41.86 34.69

position AEEs 78.80 69.40 64.46 56.79

velocity AEEs 47.78 39.87 33.65 30.02
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Fig. 6. Real target trajectory and estimate by the proposed filter
(Example B).

VII. CONCLUSION

We have developed the distributed nonlinear filter by
approximating the posterior distribution with kernel mean
embedding. By introducing the higher-dimensional repro-
ducing kernel Hilbert space, the nonlinear measurement
function has been linearly represented, and the recursive
estimate for the kernel mean embedding of posterior
distribution has been well established. Furthermore, by
extending the standard Kalman filter to the reproducing
kernel Hilbert space, we have proposed the centralized
nonlinear filter, which is much more efficient than the
existing kernel-based filters for single-sensor setups. Ad-
ditionally, to demonstrate that the proposed distributed
filter has centralized estimation accuracy, we have proved
that it is equivalent to the centralized filter. Finally, two
target-tracking examples have demonstrated the effective-
ness of the proposed filters in different scenarios.

For distributed sensor networks, privacy issues may
occur due to the information interaction between sensors,
so privacy-preserving distributed nonlinear filtering will
be studied in the future.

APPENDIX

A. Proof of Theorem 1

Let Λ = [λ1, . . . , λnyi
], where λs ∈ H, with s =

1, . . . , nyi . Then, benefiting from the representer theorem
[52], each λs can be expressed as

λs =

m∑
l=1

blϕ(x
+
i,l), s = 1, . . . , nyi ,

where b1, . . . , bm are the coefficients. Then, Λ is written
as

Λ =
[∑m

l=1 bl,1ϕ(x
+
i,l) . . .

∑m
l=1 bl,nyi

ϕ(x+
i,l)
]
= ΦB,

with B ∈ Rm×nyi . Denoting √
wi,k−1 =

[
√
wi,k−1,1, . . . ,

√
wi,k−2,m]T, and V = diag(

√
wi,k−1),

we rewrite (11) in a more comprehensive fashion as

min
B

∥Yi,kV −BTKV ∥2. (36)

Then, the solution to (11) is given by Λ̂i,k = ΦB. The
derivative of the objective function of (36) with respect to
B is −2KV V Y T

i,k +2KV VKB. Setting the derivative to
zero, we have KV VKB = KV V Y T

i,k. Then, the solution
to (36) is

B = (KV VK)−1KV V Y T
i,k

=
(
Kdiag(wi,k−1)K

)−1
Kdiag(wi,k−1)Y

T
i,k

= K−1Y T
i,k,

and thus, Λ̂i,k = ΦK−1Y T
i,k.

B. Proof of Theorem 2

Let Ỹi,k = Yi,kW
1
2

i,k−1. By some calculations, we have

1Tw̃i,k = 1T(wi,k +W
1
2

i,k−1Γ
−1
i,kξi,k)

= 1 + 1TW
1
2

i,k−1Γ
−1
i,kξi,k

= 1 + 1TW
1
2

i,k−1

(
1

n

∑
i∈V

(
nỸ T

i,kR
−1
i,k Ỹi,k + I

))−1

· 1
n

∑
i∈V

nỸ T
i,kR

−1
i,k (yi,k − Λ̂∗

i,kµi,k|k−1)

= 1 + 1TW
1
2

i,k−1

(∑
i∈V

Ỹ T
i,kR

−1
i,k Ỹi,k + I

)−1

·
∑
i∈V

Ỹ T
i,kR

−1
i,k (yi,k − Λ̂∗

i,kµi,k|k−1). (37)

Denote

Ỹk =
[
Ỹ T
1,k, . . . , Ỹ

T
n,k

]T
,

Rk = block-diag(R1,k, . . . , Rn,k).
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Then, using Woodbury matrix identity (see Page 258 of
[53]), the right hand side of (37) is equivalent to

1 + 1TW
1
2

i,k−1

(
I − Ỹ T

k

(
Rk + ỸkỸ

T
k

)−1

Ỹk

)
·
∑
i∈V

Ỹ T
i,kR

−1
i,k (yi,k − Λ̂∗

i,kµi,k|k−1)

= 1 +

(
1TW

1
2

i,k−1 − 1TW
1
2

i,k−1Ỹ
T
k

(
Rk + ỸkỸ

T
k

)−1

Ỹk

)
·W

1
2

i,k−1

∑
i∈V

Y T
i,kR

−1
i,k (yi,k − Λ̂∗

i,kµi,k|k−1)

= 1 + 1TWi,k−1

∑
i∈V

Y T
i,kR

−1
i,k (yi,k − Λ̂∗

i,kµi,k|k−1)

= 1.

Here, we use the fact that 1TWi,k−1 = wT
i,k−1−wT

i,k−1 =
0.

C. Derivation of (30)

From (23), we have µk|k−1 = Φwk−1. From (24), we
have
Pϕ
k|k−1 = (Φ− Φwk−11

T)diag(wk−1)(Φ− Φwk−11
T)T

= Φ(I −wk−11
T)diag(wk−1)(I − 1wT

k−1)Φ
∗

= Φ
(
diag(wk−1) +wk−11

Tdiag(wk−1)1w
T
k−1

− 2wk−11
Tdiag(wk−1)

)
Φ∗

= Φ
(
diag(wk−1) +wk−1w

T
k−11w

T
k−1

− 2wk−1w
T
k−1

)
Φ∗

= Φ
(
diag(wk−1)−wk−1w

T
k−1

)
Φ∗

= ΦWk−1Φ
∗.

Substituting µk|k−1, Pϕ
k|k−1 and Λ̂k given by (27) into

(29), we have
Gk = ΦWk−1Φ

∗ΦK−1Y T
k

· (YkK
−1Φ∗ΦWk−1Φ

∗ΦK−1Y T
k +Rk)

−1

= ΦWk−1Y
T
k (YkWk−1Y

T
k +Rk)

−1,

and then,
µk|k = Φwk−1 +ΦWk−1Y

T
k (YkWk−1Y

T
k +Rk)

−1

· (yk − YkK
−1Φ∗Φwk−1)

= Φwk−1 +ΦWk−1Y
T
k (YkWk−1Y

T
k +Rk)

−1

· (yk − Ykwk−1).

Here, we use the fact that Φ∗Φ = K.

D. Proof of Lemma 1

Note that Yk =
[
Y T
1,k, . . . , Y

T
n,k

]T
, where each Yi,k

for i ∈ V corresponds to a sample of the noiseless
measurement obtained at Node i, as given by (10). Then,
we have

Λ̂k = ΦK−1
[
Y T
1,k, . . . , Y

T
n,k

]
=
[
ΦK−1Y T

1,k, . . . ,ΦK
−1Y T

n,k

]
=
[
Λ̂1,k, . . . , Λ̂n,k

]
.

E. Proof of Theorem 3

We adopt the mathematical induction. At time k = 1,
suppose the KMEs of posterior distributions are the same
for the distributed and centralized algorithms, i.e., µi,0|0 =
µ0|0. At time k − 1, suppose µi,k−1|k−1 = µk−1|k−1.
Next, we prove that at time k, µi,k|k = µk|k holds. Since
the sample of the process noise is deterministic, from
µi,k−1|k−1 = µk−1|k−1, we immediately have µi,k|k−1 =
µk|k−1, which indicates Wi,k−1 = Wk−1. Then, at time
k, the KME of posterior distribution for each node i is
calculated as

µi,k|k = µk|k−1 +ΦW
1
2

k−1(Γ
∗
i,k)

−1ξ∗i,k,

where Γ∗
i,k and ξ∗i,k are given by (15) and (16), respec-

tively. Let Ỹk = [Ỹ T
1,k, . . . , Ỹ

T
n,k]

T with Ỹi,k = Yi,kW
1
2

k−1.
Then,

ΦW
1
2

k−1(Γ
∗
i,k)

−1ξ∗i,k

= ΦW
1
2

k−1

(∑
i∈V

W
1
2

k−1Y
T
i,kR

−1
i,kYi,kW

1
2

k−1 + I

)−1

·

(∑
i∈V

Ỹ T
i,kR

−1
i,k (yi,k − Λ̂∗

i,kµi,k|k−1)

)
= ΦW

1
2

k−1

( [
Ỹ T
1,k, . . . , Ỹ

T
n,k

]
· block-diag

(
R−1

1,k, . . . , R
−1
n,k

)
·
[
Ỹ T
1,k, . . . , Ỹ

T
n,k

]T
+ I
)−1 [

Ỹ T
1,k, . . . , Ỹ

T
n,k

]
· block-diag

(
R−1

1,k, . . . , R
−1
n,k

)([
yT
1,k, . . . ,y

T
n,k

]T
−
[(
Λ̂∗
1,kµ1,k|k−1

)T
, . . . ,

(
Λ̂∗
n,kµn,k|k−1

)T]T)
= ΦW

1
2

k−1

(
Ỹ T
k R−1

k Ỹk + I
)−1

Ỹ T
k R−1

k

(
yk − Λ̂∗

kµk|k−1

)
= ΦW

1
2

k−1

(
W

1
2

k−1Y
T
k R−1

k YkW
1
2

k−1 + I
)−1

·W
1
2

k−1Y
T
k R−1

k

(
yk − Λ̂∗

kµk|k−1

)
= G′

k

(
yk − Λ̂∗

kµk|k−1

)
,

where G′
k = ΦW

1
2

k−1

(
W

1
2

k−1Y
T
k R−1

k YkW
1
2

k−1 +

I
)−1

W
1
2

k−1Y
T
k R−1

k . Letting P = W
1
2

k−1Y
T
k R−1

k YkW
1
2

k−1,
we have

G′
k = ΦW

1
2

k−1

(
I −W

1
2

k−1Y
T
k R−1

k YkW
1
2

k−1

·
(
I +W

1
2

k−1Y
T
k R−1

k YkW
1
2

k−1

)−1
)
W

1
2

k−1Y
T
k R−1

k

= ΦWk−1Y
T
k

(
R−1

k −R−1
k YkW

1
2

k−1

·
(
I +W

1
2

k−1Y
T
k R−1

k YkW
1
2

k−1

)−1
W

1
2

k−1Y
T
k R−1

k

)
.

Using the Woodbury matrix identity (see Page 258 of
[53]), we have

G′
k = ΦWk−1Y

T
k

(
YkWk−1Y

T
k +Rk

)−1

= ΦWk−1Φ
∗ΦK−1Y T

k

·
(
YkK

−1Φ∗ΦWk−1Φ
∗ΦK−1Y T

k +Rk

)−1

= Pϕ
k|k−1Λ̂k(Λ̂

∗
kP

ϕ
k|k−1Λ̂k +Rk)

−1 = Gk.
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This means that

µi,k|k = µk|k−1 +Gk(yk − Λ̂∗
kµk|k−1) = µk|k,

which completes the proof.
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